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Abstract

In this paper Phoneme-Dependent Multi-Environment Mod-
els based LInear feature Normalization, PD-MEMLIN, is pre-
sented. The target of this algorithm is learning the mismatch
between clean and noisy feature vectors associated to a pair of
Gaussians of the same phoneme (one for a clean model, and
the other one for a noisy model), for each basic defined envi-
ronment. These differences are estimated in a previous training
process with stereo data. In order to compensate some of the
problems of the independence assumption of the feature vectors
components and the mismatch error between perfect and pro-
posed transformations, two approaches have been proposed too:
a multi-environment rotation transformation algorithm, and the
use of transformed space acoustic models. The behavior of this
technique was studied for speech recognition and speaker ver-
ification and identification in a real acoustic environment. The
experiments were carried out with SpeechDat Car database and
the results show an average improvement in speech recognition
of more than 77% using PD-MEMLIN, and more than 85% us-
ing transformed space acoustic models and multi-environment
rotation transformation. In speaker verification and identifica-
tion, PD-MEMLIN is applied as a previous phase to clean the
signal, with an average improvement in Equal-Error Rate of
more than 70%, and 48.69%, respectively.

1. Introduction
When testing and training acoustic conditions are different,
the accuracy of speech recognition, speaker verification, and
speaker identification systems rapidly degrades. In order to
compensate this mismatch, several techniques have been de-
veloped. They can be grouped into two important categories:
acoustic models adaptation, and feature compensation, or nor-
malization. The first one, which only modifies the acoustic
models, can be more specific, whereas, normalization, which
modifies the feature vectors, needs less data and computation
time. The use of one or other kind of algorithms depends on the
application. Hybrid techniques also exist, and they have proved
to be effective [1]. However, in real dynamic environments, it
may be impossible to retrain new acoustic models in all situa-
tions. In this cases, feature vector normalization techniques are
a good option in order to improve the accuracy of speech recog-
nition, and speaker verification and identification systems.

There are several feature compensation families [2], [3],
but one of the most promised research line is based on Min-
imum Mean Squared Error, MMSE, estimation. Techniques
like Stereo based Piecewise LInear Compensation for Environ-
ments, SPLICE [4], or Multi-Environment Models based LIn-
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ear Normalization, MEMLIN [5], are some examples of MMSE
based feature compensation. In this paper a Phoneme Depen-
dent Multi-Environment Models based LInear Normalization,
PD-MEMLIN, is proposed to clean the noisy signal.

In many cases, normalization techniques assume that the
feature vector coefficients are independent. Thus, some kinds of
transformations in the feature space, such as translations, can be
properly handled, but not others, like rotations. Other problem
in normalization techniques is the mismatch between perfect
and proposed transformations. In this paper, two approaches
are presented in order to compensate these problems. The first
one is a multi-environment rotation transformation, which com-
pensates the rotation produced in feature vectors by noisy envi-
ronments. The second one is using transformed space acous-
tic models in recognition, which reduces the mismatch error
between perfect and proposed normalization transformations.
These techniques are treated with MEMLIN and PD-MEMLIN
algorithms to study their behaviors in speech recognition.

Since PD-MEMLIN is a noise compensation algorithm, it
can be used in a previous phase in order to clean the noisy sig-
nal, before speaker verification and identification.

This paper is organized as follows: in Section 2, PD-
MEMLIN is presented. The multi-environment rotation tech-
nique is introduced in Section 3. The transformed space acous-
tic models strategy is explained in Section 4. In Section
5, the speaker verification and identification systems are pre-
sented. The results for speech recognition and speaker verifica-
tion and identification, using PD-MEMLIN with SpeechDat Car
database [6] are presented and discussed in Section 6. Finally,
the conclusions are included in Section 7.

2. PD-MEMLIN
Phoneme Dependent Multi-Environment Models based LIn-
ear Normalization is an empirical feature vector normalization
technique which uses stereo data in order to determine the dif-
ferent compensation linear transformations in a previous train-
ing process. Clean feature space is modelled as a mixture of
Gaussians for each phoneme. The noisy space is split in several
basic acoustic environments, and each environment is modelled
as a mixture of Gaussians for each phoneme. The transforma-
tions are estimated for all basic environments between a clean
phoneme Gaussian and a noisy Gaussian of the same phoneme.
This can be shown in Fig. 1 for one environment.

Before obtaining the estimated clean feature vector based
on MMSE criterion, some approximations have to be assumed:

2.1. Approximations

Three approximations are assumed: firstly, some basic environ-
ments are defined in the noisy space, and noisy feature vectors,



Figure 1: Scheme of PD-MEMLIN transformations for one environ-
ment.

y, follow the distribution of Gaussian mixture for each basic
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Secondly, clean feature vectors,x, are modelled following
the distribution of Gaussian mixture
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2.2. Cepstral enhancement

Given the noisy vector,yt, the clean one is estimated by MMSE
criterion

x̂t = E[x|yt] =

∫

x

xp(x|yt)dx, (6)

wherep(x|yt) is the Probability Density Function (PDF) ofx
given yt. With the three previous approximations, (6), can be
approximated as expression (7).

In (7), p(e|yt) is the environment weight,p(ph|yt, e) is the
probability of the phonemeph, given the noisy feature vector
and the environment,p(se,ph

y |yt, e, ph) is the probability of the
noisy Gaussian givenyt, the environment, and the phoneme,
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a previous training process. The other probabilities in (7) are
estimated on line for each time frame in the recognition phase.

The probability of the environment,p(e|yt), is estimated
using a recursive solution as
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whereβ is the memory constant, close to 1 (0.98 in this paper),
andp(e|y0) is considered uniform for all environments. Also,
p(ph|yt, e) andp(se,ph

y |yt, e, ph), are estimated as

p(ph|yt, e) =
pe,ph(yt)∑
ph pe,ph(yt)

, (9)

p(se,ph
y |yt, e, ph) =

p(yt|se,ph
y )p(se,ph

y )∑
s

e,ph
y

p(yt|se,ph
y )p(se,ph

y )
. (10)

In order to computep(sph
x |yt, e, ph, se,ph

y ), andr
s

ph
x ,s

e,ph
y

,

a previous training process with available stereo data for
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3. Multi-environment rotation
transformation

The goal of rotation transformation [7] is to obtain a transfor-
mation matrix (U1) in order to normalize the feature vector

x̂t = U1yt, (15)

where index 1 means that the rotation modifies only the direc-
tion of the biggest variance feature space axes. With the stereo
database training corpus, a transformation matrix can be ob-
tained,Ue,1, for each basic environment,e. Principal Compo-
nent Analysis (PCA) of the covariance matrixes of clean, and
noisy feature vectors for each environment, (Σ̃e, Σe, respec-
tively) is performed in order to determine the most important
axes of clean and noisy data spaces. The corresponding or-
thonormal eigenvectors and eigenvalues are:ṽe,i, andλ̃e,i for
clean space, andve,i, andλe,i, for the noisy one, wherei =

1...D, λ̃e,1 ≥ λ̃e,2 ≥ ... ≥ λ̃e,D, λe,1 ≥ λe,2 ≥ ... ≥ λe,D,
and D is the dimension of the feature vectors. The rotation
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Angles (0)

Ch0 - Ch2 21.02

Ch0 - MEMLIN 128-128 6.11

Ch0 - PD-MEMLIN 16-16 5.98

Ch0 - MEMLIN 128-128 + rot 2.45

Ch0 - PD-MEMLIN 16-16 + rot 4.21

Table 1: Angles in degrees between the highest variance axes,
where rot indicates that multi-environment rotation transforma-
tion is applied after normalization techniques.

angle between the two principal directions of clean and noisy
spaces is obtained as:ηe,1 = arccos(ṽe,1 · ve,1). It can be con-
sidered that̃ve,1 andve,1 determine an hyperplane,πe,1. The
geometric idea of this normalization technique is to split each
vector into two parts: the projection overπe,1, which will be
rotatedηe,1 degrees, and the perpendicular part, which will not
be modified.

Since ṽe,1 and ve,1 are not orthogonal, Gram-Schmidt is
applied tove,1 to obtain an orthonormal basis vectorv̂e,1, lying
in the same rotation hyperplane

v̂e,1 =
ve,1 − (ṽe,1 · ve,1) · ṽe,1

‖ve,1 − (ṽe,1 · ve,1) · ṽe,1‖ . (16)

JT
e,1 is the projection matrix ofπe,1, andRe,1 is the rotation

transformation for the angleηe,1
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sin(ηe,1) cos(ηe,1)
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Finally, the transformation matrix for the correspondent en-
vironment,Ue,1, can be obtained as

Ue,1 = Je,1Re,1J
T
e,1 + I + Je,1J

T
e,1, (19)

whereI is the identity matrix. The rotation can be performed in
all the axes, not only for the biggest variance one, but it can be
shown that with the first vector is enough [7]. In recognition, all
frames of each utterance are normalized with the most probable
environment,̂e, matrix: U1 = Uê,1.

The behavior of the multi-environment rotation transforma-
tion technique can be observed in Table 1, where Ch0 - Ch2 in-
dicates the average angle between the most important axes of
clean (Ch0) and noisy (Ch2) testing signals of SpeeechDat Car
database. Ch0 - MEMLIN 128-128 represents the angle be-
tween clean and normalized feature vectors axes when MEM-
LIN technique is used with 128 Gaussians for noisy and clean

models. Ch0 - PD-MEMLIN 16-16 indicates the angle between
clean and normalized feature vectors axes when PD-MEMLIN
is applied with 16 Gaussians for each phoneme and environ-
ment. The results show that the normalization technique is not
enough in order to compensate the rotation produced by the en-
vironment noises. If normalized signal is transformed by multi-
environment rotation transformation technique, the angles de-
crease. The results are better with MEMLIN due to rotation
transformation with PD-MEMLIN produces a rough modifica-
tion in the transformed space because it is only applied only
one transformation for environment, without any phoneme de-
pendence.

4. Transformed space acoustic models
Normalization techniques map the noisy feature vectors into the
clean space. Since they do not generate a perfect transforma-
tion, the new transformed space is not the clean one as it should
be. This mismatch error can be compensated with the acoustic
models in recognition. By transformed space acoustic models
we mean new acoustic models trained with normalized features.
The new models are obtained through three phases:

• Normalization training process (obtainingr
s

ph
x ,s

e,ph
y

and

p(sph
x |yt, e, ph, se,ph

y ).
• Compensation of the noisy training data used in training

process.
• New acoustic models are trained with normalized noisy

training data.

5. Speaker verification and identification
systems

For the verification task, an independent text Universal Back-
ground Model GMM was developed, UBM-GMM [8]. The in-
put of the system is composed of the 12 normalized MFCC with
cepstral mean substraction, the first and second derivative and
the normalized delta energy, given a feature vector of 37 coeffi-
cients. A simple VAD based on energy is used in order to verify
only with speech signal. The average length of the utterances
handled in verification and identification tasks is 3 seconds.

The universal background model is trained by Maximum
Likelihood criterion, ML, using Expectation-Maximization,
EM, algorithm [9], with four iterations. The speakers Gaus-
sian models are retrained from UBM by Maximum A Posteriori,
MAP, algorithm [10].

Given a sequence of feature vectors of speakeri, Yi, an
UBM, λUBM , and the correspondent speaker model,λi, the
decision to determine if the speaker is right will be



Train Test E1 E2 E3 E4 E5 E6 E7 MWER (%)

Ch0 Ch0 1.90 2.64 1.81 1.75 1.62 0.64 0.35 1.75

Ch0 Ch2 5.91 14.49 14.55 20.17 21.07 16.19 35.71 16.21

Ch2 Ch2 6.67 14.24 12.73 12.91 14.97 9.68 8.50 11.81

Table 2: WER baseline results, in%.

MWER (%) IMP (%)

SPLICE 7.57 57.92

PD-MEMLIN 5.30 77.67

PD-MEMLIN + rot 5.37 76.82

MEMLIN 6.06 72.24

MEMLIN + rot 5.65 76.32

PD-MEMLIN + ac 4.64 79.39

PD-MEMLIN + rot + ac 4.79 78.55

MEMLIN + ac 4.16 84.42

MEMLIN + rot + ac 4.09 85.02

Table 3: Best mean WER and improvement for different tech-
niques, in%, where rot and ac indicate that multi-environment
rotation transformation or transformed space acoustic models
are respectively used.

if
p(Yi|λi)

p(Yi|λUBM )

{
< θ ⇒ rejectλi,

≥ θ ⇒ acceptλi,
(20)

where p(Yi|λi) is the score ofYi, given the modelλi,
p(Yi|λUBM ) is the score ofYi, given the universal background
model, and finally,θ is the threshold, which is empirically ob-
tained when false accept rate and false reject rate are similar.

To identify, a GMM system is developed. The sameλi

speaker models are used, and for each speech utteranceY , the
highest model score,p(Y |λi), will determinate the estimation
speaker,̂i

î = arg max
i

p(Y |λi). (21)

6. RESULTS
A set of experiments have been carried out using the Spanish
SpeechDat Car database [6] in order to study the behavior of
the presented techniques in speech recognition, and speaker ver-
ification and identification. Noisy space is split in seven basic
environments: car stopped, motor running (E1), town traffic,
windows close and climatizer off (silent conditions) (E2), town
traffic and noisy conditions: windows open and/or climatizer
on (E3), low speed, rough road, and silent conditions (E4), low
speed, rough road, and noisy conditions (E5), high speed, good
road, and silent conditions (E6), and high speed, good road, and
noisy conditions (E7).

All the utterances are 16 KHz sampled. The clean signals
(Ch0) are recorded with a close talk microphone (Shune SM-
10A), and the noisy signals (Ch2) are recorded by a micro-
phone placed on the car ceiling in front of the driver (Peiker
ME15/V520-1). The SNR range for the clean signals goes from
20 to 30 dB, and for the noisy signals goes from 5 to 20 dB.
12 MFCC and energy are computed each 10 ms using a 25 ms
hamming window.

The feature normalization techniques (PD-MEMLIN and
MEMLIN to compare) are applied over the 12 MFCC and delta

Figure 2:Improvement, in%, for different techniques, where rot indi-
cates that multi-environment rotation transformation is used after nor-
malization techniques.

Figure 3: Improvement, in %, for different techniques with
transformed space acoustic models, where rot indicates that multi-
environment rotation transformation is used.

energy, and the different used models have 4, 8, 16, 32, 64 and
128 Gaussians for MEMLIN, and 26 Spanish phonemes with 2,
4, 8, or 16 Gaussians for each one in PD-MEMLIN.

For speech recognition, the feature vector is composed of
the 12 normalized MFCC with cepstral mean substraction, the
first and second derivative and the normalized delta energy,
given a feature vector of 37 coefficients. The phonetic acous-
tic models are composed of 25 three state continuous density
HMM with 16 Gaussians per state to model Spanish phonemes
and 2 silence models for long and interword silences. The task
consists on isolated and continuous digits.

The Word Error Rate, WER, baseline results for each envi-
ronment are presented in Table 2. MWER represents the Mean
WER, computed proportionality to the number of utterances of
each environment.

In order to compare the presented techniques, the trans-
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The comparative results in speech recognition be-
tween MEMLIN and PD-MEMLIN, with or without multi-
environment rotation transformation, are shown in Fig. 2. It
is presented the improvement, IMP, which has been calculated
with the improvement of each environment and proportionality
to the number of utterances of each environment. The best IMP
and MWER are included in Table 3 for the different cases. In
order to compare, the values for SPLICE [4] with 128 Gaus-
sians for noisy model are included, too. It can be observed
that multi-environment rotation transformation produces an im-
provement when it is applied with MEMLIN, but not when it
is applied with PD-MEMLIN. The reason is the difference be-
tween normalized training data, which is used in order to ob-
tain the rotation transformations, and normalized testing data
is higher in PD-MEMLIN than in MEMLIN, and that rotation
transformation with PD-MEMLIN produces a rough modifica-
tion in the transformed space because it is used only one trans-
formation for environment, without any phoneme dependence.
In any case, PD-MEMLIN obtains the highest results, obtaining
an improvement of 77.67%, almost 20% more than SPLICE.

The comparative results between MEMLIN and PD-
MEMLIN, with or without multi-environment rotation transfor-
mation, and with transformed space acoustic models are shown
in Fig. 3. Also the best values are presented in Table 3. The
results are better than those obtained without the transformed
acoustic models, specially in WER because the biggest im-
provements are in more noisy environments, which have the
highest WERs. Another advantage of using transformed-space
acoustic models is that the results are less dependent on the
number of transformation Gaussians. The higher difference be-
tween normalized training data and normalized testing data for
PD-MEMLIN is the reason of results with MEMLIN are better.
The best improvement is obtained with MEMLIN + rot + ac:
85.02%.

In order to study speaker verification and identification in
different acoustic conditions, the universal background model
in verification is obtained with the training corpus of Spanish
SpeechDat Car (182 speakers and 16108 sentences) and it is
composed of 512 Gaussians. Testing corpus of the database is
used to prove the verification and identification systems. There
are 91 speakers with approximately 112 sentences: 50 selected
from all environments to train the 512 Gaussian speaker mod-
els and approximately 62 from all environments to test the sys-
tems. These 91 speakers are different from the 182 training
corpus ones. The results can be seen in Table 4 and Table 5,
where EER is Equal-Error Rate, in%, Ch0-Ch0 indicates the
results when clean signal is used to test and train the speakers
and UBM models (clean models), Ch0-Ch2 means the results
when noisy signal is used to verify with clean models, Ch2-Ch2
uses noisy signal to test and train the models,Ch0 − Ch2nor

tests with normalized signal and clean models, and IMP is the
improvement obtained with the performance ofCh0−Ch2nor

compared to the Ch0-Ch0 and Ch0-Ch2 margin in%.
The number of utterances used for each environment is: 254

for E1, 290 for E2, 235 for E3, 238 for E4, 254 for E5, 247 for
E6 and 47 for E7. In verification, for each utterance, one of the
91 possible speakers is considered as author of it each time; so,

the system has to detect in each case if the speaker is the right
one, or not.

It can be observed in Table 4 that noise produces an im-
portant degradation in the behavior of the system: EER falls
down from near 1%, to 26%. If noisy signal is treated with PD-
MEMLIN, the improvement is significant, obtaining 8.64% in
false accept and false reject rates: this is, an improvement of
near 70%. Global results with all environments and different
thresholds are presented in Fig. 4, where Ch0-Ch0 is repre-
sented with a solid line, Ch2-Ch2 is printed with a dash line,
Ch0− Ch2nor with dash and dot line, and finally, Ch0-Ch2 is
printed with a dot line. The threshold is varied with a step of
0.05.
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Figure 4:Total verification results with all environments and different
thresholds.

In identification task, which success rate results in% are
presented in Table 5, it can be observed that noise degrades the
behavior of the system and the results are very poor concern-
ing the ones obtained with clean signal: 99.69% versus 22.02%
(average results). Since PD-MEMLIN is used, the success rate
increases until 59.84%: this is an improvement of 48.69%.

Although the improvements, the results in speaker verifica-
tion and identification obtained with normalized signal are far
away from Ch2-Ch2. Anyhow, in many cases noisy speaker
models are not available because it is not possible to retrain
the models in all acoustic conditions. In this sense, normal-
ization techniques are a good approximation to Ch0-Ch0 re-
sults. The reason of the results obtained when PD-MEMLIN
is applied, is that the learnt transformations project from noisy
space to a very general clean one, loosing the speaker speci-
ficity. Since it is very important in verification and identification
tasks, speaker clustering techniques can be advantageous in or-
der to define speaker-dependent transformations. In this sense,
similar projections would be used for the same kind of speak-
ers, the speaker specificity would not lose performance, and the
results could be improved.

7. CONCLUSIONS
In this paper we have presented a feature vector normalization,
PD-MEMLIN, and two approaches in order to compensate the



EER (%) Ch0-Ch0 Ch0-Ch2 Ch2-Ch2 Ch0− Ch2nor IMP (%)

E1 1.55 10.50 0.79 5.13 60.00

E2 1.21 26.73 4.70 9.58 67.20

E3 0.87 24.61 3.91 11.80 53.96

E4 0.89 27.42 2.08 6.15 70.17

E5 0.91 26.93 2.02 7.17 75.94

E6 1.08 35.00 2.71 9.71 74.56

E7 0.29 41.45 0.46 9.05 78.72

Total 1.06 26.50 3.29 8.64 70.20

Table 4: Verification results with PD-MEMLIN for each environment

Success rate (%) E1 E2 E3 E4 E5 E6 E7 Total (%)

Ch0-Ch0 99.6 99.65 99.57 99.15 100 100 100 99.69

Ch0-Ch2 65.35 13.44 27.65 12.60 10.72 11.67 0 22.02

Ch2-Ch2 98.03 95.52 91.06 97.89 96.52 87.55 100 94.89

Ch0− Ch2nor 86.22 61.37 49.36 68.90 44.34 56.03 48.93 59.84

IMP (%) 60.93 55.60 30.19 65.05 37.66 50.22 48.93 48.69

Table 5: Identification results with PD-MEMLIN for each environment

feature vector rotation generated by noise (multi-environment
rotation transformation) and the mismatch between the per-
fect and proposed normalization transformations (transformed
space acoustic models). Important improvements are obtained
in speech recognition with PD-MEMLIN (77.67%), better
than other techniques as MEMLIN or SPLICE. When multi-
environment rotation transformation and transformed space
acoustic models are applied with MEMLIN, an improvement
of 85.02% is obtained. In speaker verification and identification
tasks, PD-MEMLIN is used as a previous phase to clean noisy
feature vectors to improve the results in adverse and dynamic
acoustic conditions. An UBM-GMM system has been devel-
oped for verification, and a GMM system for identification.
The results show that noise degrades seriously the accuracy
of the systems, but pre-processing the noisy signal with PD-
MEMLIN in verification, an average improvement of 70.20%
in EER is obtained. In identification, the improvement using
PD-MEMLIN reaches until 48.69%, using clean speaker mod-
els. As a future work line to improve these results, speaker de-
pendent transformations are proposed.
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